94 research outputs found

    Comparison of the internalization efficiency of LDL and transferrin receptors on L2C guinea pig lymphocytes

    Get PDF
    AbstractWe demonstrate that L2C lymphocytes have about 10-times more receptors for transferrin (TO than healthy lymphocytes, as has been shown in the case of LDL receptors. The dissociation constant is the same in the two cell types (about 4 × 10−7 M). In contrast to LDL, Tf enters L2C lymphocytes with very rapid kinetics. It is shown by cross-reaction that each receptor is internalized independently of the other

    The \u3cem\u3edapE\u3c/em\u3e-encoded \u3cem\u3eN\u3c/em\u3e-Succinyl-l,l-Diaminopimelic Acid Desuccinylase from \u3cem\u3eHaemophilus influenzae\u3c/em\u3e Is a Dinuclear Metallohydrolase

    Get PDF
    The Zn K-edge extended X-ray absorption fine structure (EXAFS) spectra, of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae have been recorded in the presence of one or two equivalents of Zn(II) (i.e. [Zn_(DapE)] and [ZnZn(DapE)]). The Fourier transforms of the Zn EXAFS are dominated by a peak at ca. 2.0 Å, which can be fit for both [Zn_(DapE)] and [ZnZn(DapE)], assuming ca. 5 (N,O) scatterers at 1.96 and 1.98 Å, respectively. A second-shell feature at ca. 3.34 Å appears in the [ZnZn(DapE)] EXAFS spectrum but is significantly diminished in [Zn_(DapE)]. These data show that DapE contains a dinuclear Zn(II) active site. Since no X-ray crystallographic data are available for any DapE enzyme, these data provide the first glimpse at the active site of DapE enzymes. In addition, the EXAFS data for DapE incubated with two competitive inhibitors, 2-carboxyethylphosphonic acid and 5-mercaptopentanoic acid, are also presented

    3D Ordering at the Liquid–Solid Polar Interface of Nanowires

    Get PDF
    The nature of the liquid–solid interface determines the characteristics of a variety of physical phenomena, including catalysis, electrochemistry, lubrication, and crystal growth. Most of the established models for crystal growth are based on macroscopic thermodynamics, neglecting the atomistic nature of the liquid–solid interface. Here, experimental observations and molecular dynamics simulations are employed to identify the 3D nature of an atomic‐scale ordering of liquid Ga in contact with solid GaAs in a nanowire growth configuration. An interplay between the liquid ordering and the formation of a new bilayer is revealed, which, contrary to the established theories, suggests that the preference for a certain polarity and polytypism is influenced by the atomic structure of the interface. The conclusions of this work open new avenues for the understanding of crystal growth, as well as other processes and systems involving a liquid–solid interface

    Spectroscopic and Mechanistic Studies of Heterodimetallic Forms of Metallo-β-lactamase NDM-1

    Get PDF
    In an effort to characterize the roles of each metal ion in metallo-β-lactamase NDM-1, heterodimetallic analogues (CoCo-, ZnCo-, and CoCd-) of the enzyme were generated and characterized. UV–vis, 1H NMR, EPR, and EXAFS spectroscopies were used to confirm the fidelity of the metal substitutions, including the presence of a homogeneous, heterodimetallic cluster, with a single-atom bridge. This marks the first preparation of a metallo-β-lactamase selectively substituted with a paramagnetic metal ion, Co(II), either in the Zn1 (CoCd-NDM-1) or in the Zn2 site (ZnCo-NDM-1), as well as both (CoCo-NDM-1). We then used these metal-substituted forms of the enzyme to probe the reaction mechanism, using steady-state and stopped-flow kinetics, stopped-flow fluorescence, and rapid-freeze-quench EPR. Both metal sites show significant effects on the kinetic constants, and both paramagnetic variants (CoCd- and ZnCo-NDM-1) showed significant structural changes on reaction with substrate. These changes are discussed in terms of a minimal kinetic mechanism that incorporates all of the data

    Health providers' perceptions of clinical trials: lessons from Ghana, Kenya and Burkina Faso.

    Get PDF
    BACKGROUND: Clinical trials conducted in Africa often require substantial investments to support trial centres and public health facilities. Trial resources could potentially generate benefits for routine health service delivery but may have unintended consequences. Strengthening ethical practice requires understanding the potential effects of trial inputs on the perceptions and practices of routine health care providers. This study explores the influence of malaria vaccine trials on health service delivery in Ghana, Kenya and Burkina Faso. METHODS: We conducted: audits of trial inputs in 10 trial facilities and among 144 health workers; individual interviews with frontline providers (n=99) and health managers (n=14); and group discussions with fieldworkers (n=9 discussions). Descriptive summaries were generated from audit data. Qualitative data were analysed using a framework approach. RESULTS: Facilities involved in trials benefited from infrastructure and equipment upgrades, support with essential drugs, access to trial vehicles, and placement of additional qualified trial staff. Qualified trial staff in facilities were often seen as role models by their colleagues; assisting with supportive supervision and reducing facility workload. Some facility staff in place before the trial also received formal training and salary top-ups from the trials. However, differential access to support caused dissatisfaction, and some interviewees expressed concerns about what would happen at the end of the trial once financial and supervisory support was removed. CONCLUSION: Clinical trials function as short-term complex health service delivery interventions in the facilities in which they are based. They have the potential to both benefit facilities, staff and communities through providing the supportive environment required for improvements in routine care, but they can also generate dissatisfaction, relationship challenges and demoralisation among staff. Minimising trial related harm and maximising benefits requires careful planning and engagement of key actors at the outset of trials, throughout the trial and on its' completion

    Plant-mediated effects on mosquito capacity to transmit human malaria

    Get PDF
    The ecological context in which mosquitoes and malaria parasites interact has received little attention, compared to the genetic and molecular aspects of malaria transmission. Plant nectar and fruits are important for the nutritional ecology of malaria vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for malaria parasites is unclear. To test this, we infected Anopheles coluzzi, an important African malaria vector, with sympatric field isolates of Plasmodium falciparum, using direct membrane feeding assays. Through a series of experiments, we then examined the effects of sugar meals from Thevetia neriifolia and Barleria lupilina cuttings that included flowers, and fruit from Lannea microcarpa and Mangifera indica on parasite and mosquito traits that are key for determining the intensity of malaria transmission. We found that the source of plant sugar meal differentially affected infection prevalence and intensity, the development duration of the parasites, as well as the survival and fecundity of the vector. These effects are likely the result of complex interactions between toxic secondary metabolites and the nutritional quality of the plant sugar source, as well as of host resource availability and parasite growth. Using an epidemiological model, we show that plant sugar source can be a significant driver of malaria transmission dynamics, with some plant species exhibiting either transmission-reducing or -enhancing activities
    corecore